

Universal Outlier Hypothesis Testing

Sirin Nitinawarat

ECE Dept & CSL

University of Illinois at Urbana-Champaign

http://www.ifp.illinois.edu/~nitinawa

(with Yun Li and Prof. Venu V. Veeravalli)

Statistical Outlier Detection

- Single sequence of observations
- Generic observations follow some fixed (possibly unknown) distribution or generating mechanism
- Outliers follow different generating mechanism
- Goal: To find outliers efficiently
- Applications: fraud detection, public health monitoring, cleaning up data

Fraud Detection

 Example: spending records for a male graduate student

Trans- actions	Grocery	Gas	 Books	Grocery	
Amount	30\$	35\$	 75\$	35\$	

Generic behavior

Fraud Detection

Example: spending records for a male graduate student

Trans- actions	Grocery	Gas	 Books	Grocery	Spa	Cosmetics
Amount	30\$	35\$	 75\$	35\$	250\$	500\$

Generic behavior

Fraudulent behavior

Fraud Detection: Group Monitoring

Male graduate students

Student 1	Student 2	Student 3		Student <i>M</i>
Grocery	Dining	Grocery		Gas
Dining	Grocery	Gas	•••	Books
***	•••		•••	•••
Books	Movie	Books	•••	Grocery
Movie	Books	Grocery	•••	Dining
Grocery	Gas	spa	•••	Movie
Gas	Books	Cosmetics		Grocery

Outlier Hypothesis Testing

- M sequences of observations, with M large
- Almost all sequences are generated from common typical distribution
- Small subset of sequences generated from different (outlier) distribution

Outlier Hypothesis Testing

- M sequences of observations, with M large
- Almost all sequences are generated from common typical distribution
- Small subset of sequences generated from different (outlier) distribution
- Special case:
 - Exactly one sequence is generated from outlier distribution
 - Goal: to detect outlier sequence efficiently
 - Universal setting: neither typical nor outlier distributions known; no training data provided

Universal Outlier Hypothesis Testing

- Typical distribution π
- ullet Outlier distribution μ

	1	2			M
H_{1}	μ	π	π	π	π
H_2	π	μ	π	π	π
	π	π	μ	π	π
	π	π	π	μ	π
$H_{_M}$	π	π	π	π	μ

Applications: Outlier Hypothesis Testing

- Search problems and target tracking
- Sensor network applications: event detection, environment monitoring
- Fraud detection and anomaly detection in big data

Mathematical Model

$$H_{i}: p_{i}(\mathbf{y}^{(1)}, ..., \mathbf{y}^{(M)}) = \prod_{k=1}^{n} \mu(\mathbf{y}_{k}^{(i)}) \prod_{j \neq i} \pi(\mathbf{y}_{k}^{(j)})$$

Universal Outlier Hypothesis Testing

$$H_i: p_i(y^{Mn}) = \prod_{k=1}^n \left[\mu(y_k^{(i)}) \prod_{j \neq i} \pi(y_k^{(j)}) \right]$$

Nothing is known about (μ,π) except that they are distinct

Universal Test:
$$\delta: \mathcal{Y}^{Mn} \rightarrow \{1, ..., M\}$$

Universal Outlier Hypothesis Testing

$$H_i: p_i(y^{Mn}) = \prod_{k=1}^n \left[\mu(y_k^{(i)}) \prod_{j \neq i} \pi(y_k^{(j)}) \right]$$

Nothing is known about (μ,π) except that they are distinct

Universal Test:
$$\delta: \mathcal{Y}^{Mn} \to \{1, ..., M\}$$
Independent of (μ, π)

Performance Metrics

Maximal error probability:

$$e(\delta, (\mu, \pi)) = \max_{i} \mathbb{P}_{i} \{\delta(\mathbf{y}^{Mn}) \neq i\}$$

• Exponent for maximal error probability:

$$\alpha(\delta, (\mu, \pi)) = \lim_{n \to \infty} -\frac{1}{n} \log e(\delta, (\mu, \pi))$$

Performance Metrics

Maximal error probability:

$$e(\delta, (\mu, \pi)) = \max_{i} \mathbb{P}_{i} \{\delta(\mathbf{y}^{Mn}) \neq i\}$$

Exponent for maximal error probability:

$$\alpha(\delta, (\mu, \pi)) = \lim_{n \to \infty} -\frac{1}{n} \log e(\delta, (\mu, \pi))$$

Consistency: $e \rightarrow 0$ as $n \rightarrow \infty$

Exponential Consistency: $\alpha > 0$

Background: Binary Hypothesis Testing

$$H_1: p_1(\mathbf{y}) = \prod_{k=1}^n \pi(y_k) \qquad H_2: p_2(\mathbf{y}) = \prod_{k=1}^n \mu(y_k)$$

If
$$(\mu, \pi)$$
 known, $\delta_{\text{ML}}(\mathbf{y}) = \underset{i}{\operatorname{argmax}} \log p_i(\mathbf{y})$ has $\alpha(\delta, (\mu, \pi)) = C(\mu, \pi) > 0$

Background: Binary Hypothesis Testing

$$H_1: p_1(\mathbf{y}) = \prod_{k=1}^n \pi(y_k) \qquad H_2: p_2(\mathbf{y}) = \prod_{k=1}^n \mu(y_k)$$

If (μ, π) known, $\delta_{\text{ML}}(\mathbf{y}) = \underset{i}{\operatorname{argmax}} \log p_i(\mathbf{y})$ has $\alpha(\delta_i(\mu, \pi)) = C(\mu, \pi) > 0 \leftarrow \text{exponential consistency}$

Background: Binary Hypothesis Testing

$$H_1: p_1(\mathbf{y}) = \prod_{k=1}^n \pi(y_k) \qquad H_2: p_2(\mathbf{y}) = \prod_{k=1}^n \mu(y_k)$$

If
$$(\mu, \pi)$$
 known, $\delta_{\text{ML}}(\mathbf{y}) = \underset{i}{\operatorname{argmax}} \log p_i(\mathbf{y})$
has $\alpha(\delta, (\mu, \pi)) = C(\mu, \pi) > 0 \leftarrow \text{exponential consistency}$

Chernoff Info :
$$C(\mu,\pi) = \max_{0 \le s \le 1} -\log \left(\sum_{y} \mu(y)^s \pi(y)^{1-s} \right)$$

Outlier Hypothesis Testing: Known (μ,π)

$$H_i: p_i(\mathbf{y}^{Mn}) = \prod_{k=1}^n \left[\mu(\mathbf{y}_k^{(i)}) \prod_{j \neq i} \pi(\mathbf{y}_k^{(j)}) \right]$$

ML Rule:
$$\delta_{ML}(y^{Mn}) = \underset{i}{\operatorname{argmax}} \log p_{i}(y^{Mn})$$

	1	2			M
H_{1}	μ	π	π	π	π
H_{2}	π	μ	π	π	π
	π	π	μ	π	π
	π	π	π	μ	π
$H_{\scriptscriptstyle M}$	π	π	π	π	μ

Exponential Consistency: $\alpha(\delta_{ML},(\mu,\pi)) = 2B(\mu,\pi)$

Bhattacharya Distance :
$$B(\mu,\pi) = -\log\left(\sum_{y} \mu(y)^{1/2} \pi(y)^{1/2}\right)$$

Binary Hypothesis Testing: Unknown μ

$$H_1: p_1(\mathbf{y}) = \prod_{k=1}^n \pi(y_k) \qquad H_2: p_2(\mathbf{y}) = \prod_{k=1}^n \mu(y_k)$$

If μ unknown for any given δ there exists μ s.t. $\alpha=0$ No exponential consistency!

Outlier Hypothesis Testing: Unknown μ

 μ unknown: $\hat{\mu}_i = \gamma_i \leftarrow \text{empirical distribution}$

$$H_i: \hat{p}_i(y^{Mn}) = \prod_{k=1}^n \left[\hat{\mu}_i(y_k^{(i)}) \prod_{j \neq i} \pi(y_k^{(j)}) \right]$$

Generalized Likelihood (GL) Rule:

$$\delta_{GL}(y^{Mn}) = \underset{i}{\operatorname{argmax}} \log \hat{p}_{i}(y^{Mn})$$

	1	2			М
$H_{_1}$	μ	π	π	π	π
H_2	π	μ	π	π	π
	π	π	μ	π	π
	π	π	π	μ	π
$H_{\scriptscriptstyle M}$	π	π	π	π	μ

Exponential Consistency: $\alpha(\delta_{GL},(\mu,\pi)) = 2B(\mu,\pi)$

Outlier Hypothesis Testing: Unknown μ

 μ unknown: $\hat{\mu}_i = \gamma_i \leftarrow \text{empirical distribution}$

$$H_i: \hat{p}_i(y^{Mn}) = \prod_{k=1}^n \left[\hat{\mu}_i(y_k^{(i)}) \prod_{j \neq i} \pi(y_k^{(j)}) \right]$$

Generalized Likelihood (GL) Rule:

$$\delta_{GL}(y^{Mn}) = \underset{i}{\operatorname{argmax}} \log \hat{p}_{i}(y^{Mn})$$

	1	2			М
H_{1}	μ	π	π	π	π
H_2	π	μ	π	π	π
	π	π	μ	π	π
	π	π	π	μ	π
$H_{\scriptscriptstyle M}$	π	π	π	π	μ

Exponential Consistency : $\alpha(\delta_{\rm GL}, (\mu, \pi)) = 2B(\mu, \pi)$ Same as known μ, π

Sanov's Theorem

• Sanov's Theorem: For i.i.d. rvs $Y^n \sim p$, exponent of probability that random empirical distribution falls in closed set E is

Key Tool: Sanov's Theorem

• Sanov's Theorem: For i.i.d. rvs $Y^n \sim p$, exponent of probability that random empirical distribution falls in closed set E is

$$\lim_{n} -\frac{1}{n} \log \mathbb{P} \left\{ \operatorname{Empirical}(Y^{n}) \in E \right\} = \min_{q \in E} D(q \parallel p)$$

Proposed Universal Test

$$(\mu,\pi) \text{ not known}: \ \hat{\mu}_i = \gamma_i \qquad \hat{\pi}_i = \frac{1}{M-1} \sum_{j \neq i} \gamma_j$$
 empirical distributions

$$H_i: \hat{\hat{p}}_i(y^{Mn}) = \prod_{k=1}^n \left[\hat{\mu}_i(y_k^{(i)}) \prod_{j \neq i} \hat{\pi}_i(y_k^{(j)}) \right]$$

$$\delta_{GL}(y^{Mn}) = \underset{i}{\operatorname{argmax}} \log \hat{\hat{p}}_{i}(y^{Mn})$$

	1	2			М
H_{1}	μ	π	π	π	π
H_2	π	μ	π	π	π
	π	π	μ	π	π
	π	π	π	μ	π
$H_{\scriptscriptstyle M}$	π	π	π	π	$\overline{\mu}$

Proposed Universal Test

$$(\mu,\pi)$$
 not known: $\hat{\mu}_i = \gamma_i$ $\hat{\pi}_i = \frac{1}{M-1} \sum_{j \neq i} \gamma_j$

$$H_i: \hat{\hat{p}}_i(y^{Mn}) = \prod_{k=1}^n \left[\hat{\mu}_i(y_k^{(i)}) \prod_{j \neq i} \hat{\pi}_i(y_k^{(j)}) \right]$$

$$\delta_{GL}(y^{Mn}) = \underset{i}{\operatorname{argmax}} \log \hat{\hat{p}}_{i}(y^{Mn})$$

$$= \underset{i}{\operatorname{argmin}} \sum_{j \neq i} D \left(\gamma_{j} \left\| \frac{1}{M-1} \sum_{k \neq i} \gamma_{k} \right) \right.$$

Proposed Universal Test

$$(\mu,\pi)$$
 not known: $\hat{\mu}_i = \gamma_i$ $\hat{\pi}_i = \frac{1}{M-1} \sum_{j \neq i} \gamma_j$

$$H_i: \hat{\hat{p}}_i(y^{Mn}) = \prod_{k=1}^n \left[\hat{\mu}_i(y_k^{(i)}) \prod_{j \neq i} \hat{\pi}_i(y_k^{(j)}) \right]$$

$$\delta_{GL}(y^{Mn}) = \underset{i}{\operatorname{argmax}} \log \hat{\hat{p}}_{i}(y^{Mn})$$

$$= \underset{i}{\operatorname{argmin}} \sum_{j \neq i} D \left(\gamma_{j} \mid \mid \frac{1}{M-1} \sum_{k \neq i} \gamma_{k} \right) \leftarrow \underset{\text{statistic}}{\operatorname{key}}$$

Performance of Universal Test

$$\alpha(\delta, (\mu, \pi)) = \min_{q_1, \dots, q_M} D(q_1 || \mu) + D(q_2 || \pi) + \dots + D(q_M || \pi)$$

$$\sum_{j \neq 1} D(q_j || \frac{1}{M-1} \sum_{k \neq 1} q_k) \geq \sum_{j \neq 2} D(q_j || \frac{1}{M-1} \sum_{k \neq 2} q_k)$$

Performance of Universal Test

Universally exponential consistency!

$$\alpha\left(\delta, \left(\mu, \pi\right)\right) = \min_{q_1, \dots, q_M} D(q_1 \parallel \mu) + D(q_2 \parallel \pi) + \dots + D(q_M \parallel \pi)$$

$$> 0, \forall \left(\mu, \pi\right)$$

$$\sum_{j \neq 1} D(q_j \parallel \frac{1}{M-1} \sum_{k \neq 1} q_k) \geq \sum_{j \neq 2} D(q_j \parallel \frac{1}{M-1} \sum_{k \neq 2} q_k)$$

- Motivation: When only π is known, optimal error exponent is $2B(\mu, \pi)$
- Estimate of π satisfies

$$\lim_{n\to\infty} \frac{1}{M} \sum_{i=1}^{M} \gamma_i = \frac{1}{M} \mu + \frac{M-1}{M} \pi,$$

$$\lim_{M \to \infty} \frac{1}{M} \mu + \frac{M-1}{M} \pi = \pi$$

Our universal outlier detector achieves error exponent lower bounded by

min
$$2B(\mu, q)$$
 q: $D(q||\pi) \le \frac{1}{M-1}(2B(\mu, \pi) + C_{\pi})$

Our universal outlier detector achieves error exponent lower bounded by

min
$$2B(\mu, q)$$
 q: $D(q||\pi) \le \frac{1}{M-1}(2B(\mu, \pi) + C_{\pi})$

This lower bound is non-decreasing in $M \ge 3$, and converges to $2B(\mu, \pi)$ as $M \to \infty$

Numerical Results

Extension to Multiple Outliers: Known (μ,π)

For
$$S \subseteq \{1, ..., M\}$$
, $|S| = T$, T fixed and known

$$H_{S}: p_{S}(\mathbf{y}^{Mn}) = \prod_{k=1}^{n} \left[\prod_{i \in S} \mu(\mathbf{y}_{k}^{(i)}) \prod_{j \notin S} \pi(\mathbf{y}_{k}^{(j)}) \right]$$

ML Rule:
$$\delta_{ML}(y^{Mn}) = \underset{S}{\operatorname{argmax}} \log p_{S}(y^{Mn})$$

Exponential Consistency: $\alpha(\delta_{ML},(\mu,\pi)) = 2B(\mu,\pi)$

Proposed Universal Test: One Outlier

$$\delta_{GL}(y^{Mn}) = \underset{i}{\operatorname{argmax}} \log \hat{p}_{i}(y^{Mn})$$

$$= \underset{i}{\operatorname{argmin}} \sum_{i \neq i} D \left(\gamma_{j} \left\| \frac{1}{M-1} \sum_{k \neq i} \gamma_{k} \right) \leftarrow \underset{\text{statistic}}{\operatorname{key}} \right.$$

	1	2			Μ
H_{1}	μ	π	π	π	π
H_2	π	μ	π	π	π
	π	π	μ	π	π
	π	π	π	μ	π
$H_{\scriptscriptstyle M}$	π	π	π	π	μ

Proposed Universal Test: One Outlier

$$\delta_{GL}(y^{Mn}) = \underset{i}{\operatorname{argmax}} \log \hat{\hat{p}}_{i}(y^{Mn})$$

$$= \underset{i}{\operatorname{argmin}} \sum_{j \neq i} D \left(\gamma_{j} \mid \left| \frac{1}{M-1} \sum_{k \neq i} \gamma_{k} \right| \right) \leftarrow \underset{\text{statistic}}{\operatorname{key}}$$

	1	2			М
H_{1}	μ	π	π	π	π
H_2	π	μ	π	π	π
	π	π	μ	π	π
	π	π	π	μ	π
$H_{\scriptscriptstyle M}$	π	π	π	π	μ

Proposed Universal Test: Multiple Outliers

Our universal outlier detector achieves error exponent lower bounded by

min
$$2B(\mu, q)$$
 q: $D(q||\pi) \le \frac{1}{M-T}(2B(\mu, \pi) + C_{\pi})$

Our universal outlier detector achieves error exponent lower bounded by

min
$$2B(\mu, q)$$
 q: $D(q||\pi) \le \frac{1}{M-T}(2B(\mu, \pi) + C_{\pi})$

This lower bound is non-decreasing in M, and converges to $2B(\mu, \pi)$ as $M \to \infty$

Conclusion

- Generalized likelihood (GL) test is universally exponentially consistent for outlier hypothesis testing wherein number of outliers is fixed and known a priori
- GL test is asymptotically efficient in error exponent for large M even with no training data
- If number of outliers is not known a priori, there is no universally exponentially consistent test

Fraud Detection: Group Monitoring

Male graduate students

Student 1	Student 2	Student 3		Student <i>M</i>
Grocery	Dining	Grocery	• • •	Gas
Dining	Grocery	Gas	•••	Books
***				•••
Books	Movie	Books		Grocery
Movie	Books	Grocery		Dining
Grocery	Gas	spa		Movie
Gas	Books	Cosmetics		Grocery