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Statistical Outlier Detection

* Single sequence of
observations .

® Generic observations follow

some fixed (possibly unknown) .
distribution or generating
mechanism « %,
* Qutliers follow different : . :-. '.
generating mechanism e "o o,
®* Goal: To find outliers efficiently '.. ¢ o

®* Applications: fraud detection,
public health monitoring,

cleaning up data




Fraud Detection

®* Example: spending records for a male
graduate student
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Fraud Detection

®* Example: spending records for a male
graduate student

-m
actions

Amount 250% 500%

\— ~ H_/

Generic behavior Fraudulent behavior
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Fraud Detection: Group Monitoring

® Male graduate students

ey e T

Grocery Dining
Dining Grocery Books
Books Movie Grocery
Movie Books Dining
Grocery Gas Movie
Gas Books Grocery
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Outlier Hypothesis Testing

®* M sequences of observations, with M large

®* Almost all sequences are generated from
common typical distribution

®* Small subset of sequences generated from
different (outlier) distribution
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Outlier Hypothesis Testing

®* M sequences of observations, with M large

®* Almost all sequences are generated from
common typical distribution

®* Small subset of sequences generated from
different (outlier) distribution

® Special case:

o Exactly one sequence is generated from outlier
distribution

o Goal: to detect outlier sequence efficiently

o Universal setting: neither typical nor outlier
distributions known; no training data provided



j[ Universal Outlier Hypothesis Testing

®* Typical distribution T
® OQutlier distribution U

1 2 M
Hlu|w|w|t| T
H lmT\yu|T|T|m

T|wlu|mw|

T(mw|(mw|u|xw
HI|T|mw|T|T|u




j[ Applications: Outlier Hypothesis Testing

® Search problems and target tracking

®* Sensor network applications: event detection,
environment monitoring

®* Fraud detection and anomaly detection in big
data



Mathematical Model

y](1) y](2) y](M)
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k=11 J= 1 _




][ Universal Outlier Hypothesis Testing

n

Hi: p (yMn) _ H | M(y,(;)) H 7T<y/(<j)) _

k =11 J= i

Nothing is known about (u,7) except that they are distinct

Universal Test: &: Y™ — {1, M}



][ Universal Outlier Hypothesis Testing

n

Hi: p (yMn) _ H | M(y,(;)) H 7T<y/(<j)) _

k =11 Jjo=i

Nothing is known about (u,7) except that they are distinct

Universal Test: &: Y™ — {1, M}

\

Independent of (u,x)



Performance Metrics

[

®* Maximal error probability:
e((S, (,u, 7'(')) = mlax P {6(yM”) = i}

®* Exponent for maximal error probability:

(i) = tm —ogels 1)



Performance Metrics

[

®* Maximal error probability:
e((S, (M, w)) = max P {(S(y"””’) = i}
®* Exponent for maximal error probability:

oz(é, (1 w)) = lim —lloge(é, (1 w))

Nn— oo n

Consistency: e—0as n— o
Exponential Consistency: a >0
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Background: Binary Hypothesis Testing

H:ply) = [[=ly)  H: p(y) = JTTuly,)
k=1 k=1

If (u,m) known, § (y) = argmax logp.(y)
has o(6,(u,m) = Clu,m) >0

10
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Background: Binary Hypothesis Testing

n

H:ply) = [[=ly)  H: p(y) = TTuly,)

k=1

If (u,m) known, § (y) = argmax logp.(y)

has «a(6,(u,m) = C(u,m) > 0 < exponential consistency

)

r
Chernoff Info : C(u,7) = max —log|) " u(y)’ m(y)"
(¥

0<s<1

/
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][ Outlier Hypothesis Testing: Known (y,ﬂ)

s ) = 1| w62 T )

Jo= i
1 2 M
Hlulr|r|m|m
_ My Mny H|lmlulr|m|m
MLRule: § (y") = argmax logp,(y™) ™ s
nlrn|rlul|m
Hlm|w|m|m|u

Exponential Consistency : (6, ,(¢,m) = 2B(p,7)
)

(
Bhattacharya Distance : B(u,m) = —log|>» u(y)"*m(y)"?
\ Y

J
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Binary Hypothesis Testing: Unknown U

H:ply) = [[=ly)  H: p(y) = TTuly,)

If .« unknown
for any given 6 there exists u s.t. a=0
No exponential consistency!
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Outlier Hypothesis Testing: Unknown U

[

i unknown: i =~ <« empirical distribution

He plv) = 11 a(v?) TT=(v)
k=11

Jo= i |
1 2 M
Generalized Likelihood (GL) Rule : Alulr|r|m)m
Hlrlu|z|m|m

Mn ~ Mn

6G|_(y ) = argmax |ngl(y ) Z 77; ,Ljé w|w
i ulm
Hlm || 7w|u

Exponential Consistency :  a(é_,(p,m) = 2B(u,m)
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Outlier Hypothesis Testing: Unknown U

[

i unknown: i =~ <« empirical distribution

He plv) = 11 a(v?) TT=(v)
k=11

Jo= i |
1 2 M
Generalized Likelihood (GL) Rule : Alulr|r|m)m
Hlrlu|z|m|m

Mn ~ Mn

6G|_(y ) = argmax |ngl(y ) Z 77; ,Ljé w|w
i ulm
Hlm || 7w|u

Exponential Consistency :  a(é_,(p,m) = 2B(u,m)

T

Same as known [, 7T
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Sanov’s Theorem

® Sanov’s Theorem: For i.i.d. rvs Y" ~ p,
exponent of probability that random empirical
distribution falls in closed set E is

14
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Key Tool: Sanov’s Theorem

® Sanov’s Theorem: For i.i.d. rvs Y" ~ p,
exponent of probability that random empirical
distribution falls in closed set E is

Ii{'n —%Iog]P{Empirical(Y”) < E} — Teip D(qllp)

D(q Il p)
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Proposed Universal Test

(,u,w) not known: [ =~ 7 = _127

| 7

empirical distributions

H éi(yMn) _ kﬁ]- ( (I))HW( (J))

Jil

Generalized Likelihood (GL) Rule: A MEEEE
6(Mn)— | :‘\(Mn) Hlr|lu|lr|r|x
o (y™) = argmax logp,(y T

Hlm|m || |u
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Proposed Universal Test

[

(,u,w) not known: /i = v, = Z
J

4 i) - 11l <~>1;1 "

Hiu|\mwymw|mw|mw

Generalized Likelihood (GL) Rule : i Z L
Mn ~ Mn I Tu|n

6., (y"™) = argmax logp.(y"") wFEF 7 e

I
(

= argmmZD Y, H Z%

Jj=1i \ k¢l
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Proposed Universal Test

[

(,u,w) not known: [ =~ 7 _]ZV

e bv) =TT ) T4 ()

H, ,L]L 72r T\ ;\r/l

Generalized Likelihood (GL) Rule : M= Z —

6., (y"™) = argmax Iogﬁi(y"””) H T Z
| ( \

— argmmng\7 H Igl Tk Is('f_zzltistic
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Performance of Universal Test

a(é, (i, 7)) = min D@, Il ©)+D(@, | M +...+D(@, Il )

s -0 Ay

> D@, II—qu > ) D@, II—qu

Jj=] k:t] Jj=2 /<¢2
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Performance of Universal Test

Universally exponential consistency!

a(8, (i 7)) = min D@1l 1)+ D@, I ™) +...+ D@, |l )

/N

\ > 0, V(,u,ﬂ)
> D@, II—qu > ) D@, II—qu

Jj=1 k:t] Jj=2 /<¢2

17



Asymptotic Efficiency

[

®* Motivation: When only 7 is known, optimal
error exponent is 28(,u, w)

® Estimate of 7t satisfies

1 & ] M —1
im — = | T,
oo M,Z;% m" T M

] M —1
lim — - T = T
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[

Asymptotic Efficiency

Our universal outlier detector achieves error
exponent lower bounded by

min 2B(11, q)

4: D(gllr) < ﬁ( 2B(p, 7)+C )

19
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Asymptotic Efficiency

Our universal outlier detector achieves error
exponent lower bounded by

min 2B(11, q)
. o .
a: D(@lim) < ——(2B(s, m)+C)
This lower bound is non-decreasing in M > 3,
and converges to 2B(u, 1) as M — oo
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Numerical Results

Lower and upper bounds for the error exponents

0.18

0.16

—e— |ower bound, u=(0.3, 0.7), n=(0.7, 0.3)
— * — |lower bound, u=(0.35, 0.65), n=(0.65, 0.35) 7
' —O- " lower bound, p=(0.4, 0.6), t=(0.6, 0.4)

—————————————————— e e =R R e e —— M — X —X—— X

10 15 20
Iogz(M), where M is the number of the coordinates
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][ Extension to Multiple Outliers: Known (u,7)

For S C {1, o M}, |S| =T, T fixed and known

n

Heopg(y™) = TL| TTn(v?) II=(v)

k=11 ieS Jj¢S

Mn)

ML Rule: ¢, (y") = argmax logp_(y
S

Exponential Consistency :  a(o, ,(u,7) = 2B(p,)
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Proposed Universal Test: One Outlier

[

Generalized Likelihood (GL) Rule :
6, (y"") = argmax logp,(y

]
— argmin Y D|y |[——= ", [e=key
, — JUM =14~ 'k statistic
J =1 \ k = | )

1 2 M
Hlulr|rn|x|n
Hilrlulx|n|x
A B2 M EEG
nlr|nlulr
Hlr|z|z|x|u
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Proposed Universal Test: One Outlier

[

Generalized Likelihood (GL) Rule :
6, (y") = argmaxlogp,(y

]
= argmin ZD Y H—ZW —ey
: Ly TNV Tk statistic
,_l = | \ k = | )
1 2 M
Hlulr|xn|x|m
HlTjujzmyzjn Summing over all typical 7Ti
z 7; ﬁ; & Z sequence indices under
4 hypothesis i
H|T|\T|T|T|u
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Proposed Universal Test:
Multiple Outliers

Generalized Likelihood (GL) Rule :

(

Mn L .
6 (y"") = argmin ZD = ka
Y jé¢S T ¢S
Summing over all typical sequence T

indices under hypothesis S >
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Asymptotic Efficiency

Our universal outlier detector achieves error
exponent lower bounded by

min 2B(y1, q)

-I

q: D(qllT) <
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Asymptotic Efficiency

Our universal outlier detector achieves error
exponent lower bounded by

min 2B(11, q)

-I

q: D(qllT) <

This lower bound is non-decreasing in M,
and converges to 2B(u, 1) as M — oo
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Conclusion

1

® Generalized likelihood (GL) test is universally
exponentially consistent for outlier hypothesis
testing wherein number of outliers is fixed and

known a priori

® GL test is asymptotically efficient in error
exponent for large M even with no training
data

® If number of outliers is not known a priori,
there is no universally exponentially consistent
test
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Fraud Detection: Group Monitoring

® Male graduate students

ey e T

Grocery Dining
Dining Grocery Books
Books Movie Grocery
Movie Books Dining
Grocery Gas Movie
Gas Books Grocery
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